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A Spectral-Domain Analysis of Periodically
Nonuniform Microstrip Lines

FRANZ J. GLANDORF AND INGO WOLFF, SENIOR MEMBER, IEEE

Abstract — Periodically nonuniform microstrip lines are analyzed on the

basis of a numerical field calculation. Floquet’s theorem is used to express

all field quantities in terms of their spatial harmonics, so that the problem

can be treated similarly to the uniform microstrip line. The boundary-value

problem for the microstrip line in an enclosure is formulated in a rigorous

way and then solved using Galerkirr’s method in the Fourier-transform

domain. Numerical and experimental results are presented for a sinusoidal

and a zigzag-shaped microstrip line.

I. INTRODUCTION

T HIS PAPER describes investigations on microstrip

lines with strip widths which change periodically in

the z-coordinate direction (the direction of wave propa-

gation). Such lines from now on shall be called periodically

nonuniform microstrip lines. Fig. 1 shows three examples

of such periodically nonuniform microstrip lines.

Like all waveguides with cross sections which vary peri-

odically in the direction of wave propagation, the periodi-

cally nonuniform microstrip lines have the following elec-

trical properties (e.g., [1]).

1) Waves propagating on such lines have phase velocities

much smaller than the propagation velocity of light in an

equivalent medium; they therefore can be used as slow-

wave structures.

2) The transmission properties of periodic waveguides

are characterized by passbands and stopbands. These

properties can be used to realize filtering structures.

The electromagnetic field of the uniform microstrip line

is a hybrid mode; i.e., the magnetic field and the electric

field have longitudinal field components. This hybrid-mode

character of the field makes the exact analysis of the

microstrip line difficult, and the numerical methods nor-

mally used are complicated (e.g., [2]–[4]). The field-theoret-

ical analysis of nonuniform microstrip lines is even more

complicated. Therefore, up to now most of the theories

described in the literature are based on simplifying as-

sumptions, e.g., on the assumption of a TEM-mode char-

acter of the electromagnetic field [5]–[7], or on a wave-

guide model for simplifying the calculations [7], [8].

Several papers have been published which describe ex-

perimental investigations on periodically nonuniform mi-

crostrip lines [10] –[12]. Additionally, there are some de-
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Fig. 1. Three examples for periodically nonumform microstnp lines

scriptions of calculation methods which use simplifying

assumptions. One method [16] which does not use restric-

tive assumptions has also been applied to periodically

nonuniform microstrip lines.

In this paper, the special problem of periodically non-

uniform rnicrostrip lines shall be investigated on the basis

of a numerical calculation of the electromagnetic field

distribution on the line in the spectral domain. This method

is evaluated for some examples and the theoretical results

are compared to measurements with frequency depen-

dence. Additionally, the frequency-dependent voltage and

current distributions on the line are investigated and de-

scribed.

11. ANALYSIS ON THE BASIS OF THE

ELECTROMAGNETIC FIELD THEORY

A covered, periodically nonuniform microstrip line of

the type shown in Fig. 2(a) is considered. All geometrical

parameters and material parameters are defined in Fig. 2.
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Fig. 2. (a) Cross section of thepenodically nonuniform microstripline

considered and (b) an example for a possible strip geometry.

Fig. 2(b) shows an example of the top metallization, a

zigzag-shaped strip being chosen in this case. The metalli-

zation thickness is assumed to be zero. The periodically

varying width of the strip is defined by the two periodic

functions Wi(z) (left side) and w,(z) (right side) as a

function of the z coordinate. The width of the strip at the

cocmdinate z is therefore w(z) = w [( z) – w,(z). The peri-

odicity (length of one period) of the line is p.

The theory for the periodically nonuniform rnicrostrip

line described here is based principally on the method of

Jansen [3], [17], [18], which was developed for the uniform

microstrip line. This method consequently considers the

hybrid-mode character of the electromagnetic field. It has

goc~d convergence behavior, has few final equations, and

needs relatively short computer time.

Jansen’s method for the covered microstrip line [18]

describes the electromagnetic fields in regions I and II

(Fig. 2) using two potential functions for each region,

~’lI(x, y, z) and @I’I1(x, y, z), which satisfy the wave

equation. Using these potential functions, the electromag-

netic fields in the field regions I and II can be calculated

wit h the help of Maxwell’s equations.

A wave propagation in the z direction

the potential functions as follows:

+i(x, y, z) =~~(x, y,z)e-Jflz

Vi(.x, y, z) = *;(x, y,z)e-~flz,

is described by

i = 1,11. (1)

In contrast to the case of the uniform rnicrostrip line, in

the case of the periodically nonuniform microstrip line the

functions o;(x, y, z) and ~~(x, y, z) are still periodic

functions of the coordinate z (Floquet’s theorem [19]).

This means that the potential functions can be developed
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into Fourier series with respect to the z coordinate:

k=+cx

@;(x, y, z) = ~ fp~(x, y)d(2”k/J’)’
k=–cx

k=+cc

Ti(x, y, z) = ~ t)j(x, y)eJ(2”k/p)z. (2)
k .—~

Therefore, for the total potential functions @i(x, y, z) and

*’(x, y, z), the following equations are valid:

k=~w
@’(x, y,z) = ~ Ti(x, y)e~fl’z

k=–cc

k=+ca

‘3!’(x, y, z) = ~ ~j(x, y)eJ8’z,
k=–cc

2wk
with ~~ = — -~. (3)

P

As a consequence, the electromagnetic field forms an

infinite spectrum of electromagnetic waves with different

phase constants pk. The single spectral components shall

be called space harmonics.

For brevity and clearness, only lines symmetric with

respect to the z axis are considered, and only waves with

an even y component of the electric field strength with

x-coordinate dependence shall be discussed here. Of course,

the theory may also be applied to all other cases if it is

required, but the assumption made here is

w,(z) = –w[(z)

E,(x,y,z )= Ey(-x,y,z). (4)

This assumption means that the potential functions q~

must be odd with respect to the x coordinate while the

potential functions V; must be even with respect to the x

coordinate; they must satisfy the boundary conditions at

the metallic cover and on the ground plane, as in the case

of the uniform microstrip line.

The space harmonics of the potential functions 01’11 and

*111 can be developed into a series of harmonic functions

in such a way that each space harmonic independently

satisfies the boundary conditions and the wave equation:

IPj(x, Y) = ~ a:kcos(kj.k{ Y+ Y’})sin(k..x)
~=1

ti(~, Y) = 5 b~ksin(k~nk{Y + y’}) cos(k..x) (5)
~=1

where i’= 1,11, yl= d, yll= – h, k.. = (n –0.5)r/a, and

k;nk = k? – k;. – /3:.
The coefficients a;k and b~k now have to be determined

so that on the surface of the dielectric substrate material
the boundary conditions for the tangential electric and

magnetic field strength are fulfilled, i.e.,

(&-in )xz, =d

(Z%fi’’)x<=flx>z). (6)

:(x, z), the surface current density in the metallic strip, is

a function of the coordinate x as well as the coordinate z.
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The surface current density of the periodically nonuni-

form microstrip line consists of an infinite spectrum of

space harmonics also; therefore, as in the case of the other

field components, it may also be developed into a Fourier

series with respect to the z coordinate. Additionally, it

must be possible to develop this quantity into a Fourier

series with respect to the x coordinate with a periodicity of

4a, because the width of the metallic cover (which is half

the periodicity) is chosen to be 2a (Fig. 2(a)). The x

component and the z component are even functions of x

for the even modes, which are the only ones considered

here (see above). Therefore, the two-dimensional Fourier

series expansion of J-is

k=~ca co

(sin(kX.x) o
g =

o Cos(kxnx) )

and

\“znk]

If the electromagnetic field is calculated using the potential

functions given in (2) or (5), respectively, and if in addition

the boundary conditions are introduced into these equa-

tions, the unknown coefficients a ~~, a~~, b~k, and b~~ can

be determined as functions of the Fourier series coeffi-

cients J~k of the surface current density by a comparison

of the coefficients of the resulting systems of equations.

The total electromagnetic field of the periodically non-

uniform microstrip line therefore can be d$scribed by the

(up to now) unknown Fourier coefficients J~k of the surface

current density. Especially, for the electrical field strength

which is tangential to the plane y = O, the following equa-

tion results:

with

and

(8a)

(8b)

and

where

j, MARCH 198’/

(SC)

(8d)

III. THE SOLUTION OF THE BOUNDARY-VALUE

PROBLEM USING GALERKIN’S METHOD

Equation (8) describes the electric field which is tangen-

tial to the boundary between the dielectric substrate

material and the air region by means of a two-dimensional

Fourier series with respect to the surface current density

on the boundary. On the metallic strip (which is assumed

to be of infinite conductivity) the tangential electric field

strength must vanish.

To find a solution of this eigenvalue problem, the surface

current density and the phase co~stant have to be de-

termined so that the condition El= O for w,( z )s xs

w I(z ) and all values of z is satisfied.

This problem shall be solved using Galerkin’s method;

for this purpose, the surface current density is expanded

into a series using a functional system which still has to be

chosen appropriately:

(9)

with

()x
i,= x“ Z,= O for

(

–a<x <w,(z)
and

lZ Wl(z) <x <a.

In (9), the vector function ~ is used to describe the x

dependence of the surface current density for values z =

const. Because these functions are identically zero outside

the metallic strip and because of the z-dependent strip

width, these functions must be z dependent also. The

dependence of the surface current density on the z coordi-

nate which results from the electromagnetic field will be

described by the functions ~(z); they are periodic func-

tions having periodicity p. Their Fourier series expansion

is given by

U/(z) = ‘~mu11eJ(2”1/p)’. (lo)
[=–CC

With this, together with (9), the Fourier coefficients de-

scribing the surface current density in (7) can be written as

(11)
~=l[=—m

with

ink,,= &~+’~y$eJ(2”’p)(’-k)zd
r

If these coefficients are introduced into (8), the tangential
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electric field strength is

To satisfy the condition that the tangential electric field

strength vanish on the metallic strip, the moment method

in its special form of Galerkin’s method [20] is used. T&s

means that the scalar product formed by the tangential

electric field strength and by the expansion functions of

the surface current density must vanish:

b!‘“+P “(’)~~~(x, Z)~(x, z)e-JPszdxdz =0 (13)

Zo w,(z)

with r=l,2,. . . ,mands= –m,. ..l, (),1,1, +m. ,+m.
If the tangential electric field strength given in (12) is

introduced into (13) and if in addition the succession of

integration and summation is exchanged, the infinite equa-

tion system of the following form is derived:

. #fi/PX-s) &dz

m +Comcc

(14)

for r=l,2,. . . ,CO and s=–co,. ..1,0,1, l,+c O,+cO.
Here,

~=lk=–m

For the numerical evaluation, the infinite series are trun-

cated at finite values of the indices. If the maximum values

of the indices i and 1 are i = 1 and Z= + L, then (2L + 1)1

unknown coefficients Ull have to be determined. If the

same truncation for the series with indices r and s is

macle, the number of equations is equal to the number of

unknown coefficients U,l.

The highest value of the index k is evaluated from the

indices 1 and s. Only elements of the Fouriers series of the

surface current density given in (11) up to the order of M

are considered, where M must satisfy the conditions 11– kl

< M and [s – k I < M. The highest value of the index n

will be designated N.
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Fig. 3. Strip geometry of a periodically nonuniform microstrip hne with

sinusoidally variable strip width.

The finite homogeneous equation system has a nontriv-

ial solution only if the determinant of the system matrix is

zero. The elements of the system matrix are functions of

the geometrical parameters of the microstrip line, the

frequency and the phase constants. The zeros of the de-

terminant therefore can be determined either as a function

of the wavelength for a given frequency or as a function of

the frequency if the wavelength is given. The unknown

coefficients Uil may then be easily calculated within a

constant factor. Using these coefficients, the electrical

surface current density in the metallic strip and, therefore,

the electromagnetic field in all field regions of the struc-

ture (Fig. 2(a)) can be computed.

IV. THE NUMERICAL EVALUATION

The convergence of the numerical method is heavily

influenced by the choice of the expansion functions of the

surface current density. Two physical properties must be

taken into account when the expansion functions are cho-

sen.

1) It must be borne in mind that the current density

cannot have a component perpendicular to the edge of the

metallic strip. T@ condition will be satisfied if all expan-

sion functions X,(x, z) have only components parallel to

the curves defined by w,(l) and w ~(z) (Fig. 3).

2) Adclitionally, consideration must be given to the fact

that the surface current density has a pole at the strip edge

(edge condition). Therefore, the expansion functions are

chosen so that this pole is approximated fairly well

a priori.

A system of expansion functions which satisfies these

requirements is

“( )( )cos(a(x, z)) sin(a(x, z)) ~X,(x, z)

–sin(a(x, z)) cos(a(x, z)) ~,l(x, z)

with

[ (–)

2inx
forlsi< Izandw, <x<wl

fx, (x, z) = ‘ln w(z)

(0 forlz<i<lor x:>wi(x) x<w,(x)

(o forl<i<lzorx>wl(x) x< w,(x)
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Fig. 4. Brillouin diagram of the fundamental mode on a periodically
nonuniform mlcrostrip line with sinusoidally variable strip width.

and

~arctan(dw,(z)\
\ dz ].x

a(x, z) =
w(z) “

(15)

The integrals defining the Fourier coefficients in (11)

can be evaluated in closed form with respect to the x

coordinate if these expansion functions are used. They

must be integrated numerically with respect to the z coor-

dinate.

As an example, a periodically nonuniform microstrip

line with sinusoidally varying strip width (Fig. 3) shall be

discussed. The system of equations (14) has been derived

for the covered microstrip line shown in Fig. 2; therefore,

not only does (14) contain the solutions for the electro-

magnetic field modes which are propagating in the micro-

strip structure; in addition, waveguide modes inside the

metallic cover may be found. Only the microstrip mode

which in the case of a decreasing amplitude DW of the

width function (Fig. 3) converges into the quasi-TEM

mode of the uniform rnicrostrip line shall be of interest

here. In the following, this mode will be called the funda-

mental mode of the periodically nonuniform microstrip

line.

Fig. 4 shows (in the manner usually applied in the case

of periodically nonuniform lines) the frequency-dependent

transmission properties of the microstrip line given in Fig.
3 in the ~ – k. plane (Brillouin diagram). The transmission

properties are given by the solid lines in this diagram. As

can be seen from the figure, the line has the typical

transmission properties of periodic lines characterized by

stopbands and passbands.

If a solution of the infinite equation system exists for a

frequency f and a phase constant ~, the equation system

also has a solution for the frequency f and the phase

constant ~’ = ~ + 27p/p, with p = +1, +2, +3, . “ “

(Floquet’s theorem). These different solutions are classified

as solutions of order p. In Fig. 4, the solid lines represent

the solution of order zero. The solutions of order p # O can

be transformed into solutions of the order p = O if the

indices 1 and k (14) are replaced by 1’= 1– p and k’= k

– p. The solutions of order p # O therefore describe the

same mode as the solution of order p = O.

Additionally, since a wave in the negative z direction

must be a solution of the eigenvalue problem, the equa-

tions may also be solved for the frequency f and the phase

constant /3’ = – ~. Solutions of the order p # O exist for

waves which propagate in the negative z direction as well

as in the positive z direction.

In Fig. 4, solutions of order p + O are shown as dashed

lines. The curves with a positive slope characterize the

wave modes propagating in the positive z direction, whereas

the curves with a negative slope describe waves which

propagate in the negative z direction. The curves in Fig. 4

which represent solutions of order p + O also can be inter-

preted as the dispersion curves of the space-harmonic

partial fields of the fundamental mode.

V. THE CONVERGENCE OF THE NUMERICAL

METHOD

The convergence behavior of the numerical method shall

be discussed for the example of a periodically inhomoge-

neous microstrip line with sinusoidally varying strip width.

The substrate material used is polyguide material (~, =

2.32) with a thickness of h = 1.56 mm. The geometrical

dimensions of the metallic strip structure (as shown in Fig.

3) are: W.= 6 mm, DW=1 mm, and p =10 mm.

The stability of the calculated effective dielectric con-

stant c,eff = ( ~/kO) 2 in relation to the different cutoff

indices has been taken as a criterion for the convergence of

the numerical method. The effective dielectric constant

~,eff is dependent on the chosen number of expansion

functions as well as on the number of Fourier coefficients

of the surface current density in the z direction. Addition-

ally, the computation results are influenced by the accu-

racy with which the expansion functions are described in

the spectral domain. This means that the number of coeffi-

cients of the two-dimensional Fourier series expansion of

the field quantities influences the result. Furthermore, the

computations show that the convergence is also frequency

dependent.

The relative error of the computed values t.,ff at a

frequency of 1 GHz (A = 20p) is shown in Fig. 5 for a

constant number of expansion functions (1 = 10 and 1,=5)

and a constant number of Fourier coefficients of the

surface current density (L= 6) in relation to the cut-off
indices N and M of the two-dimensional Fourier series. As

a reference for calculating the relative error, the value of

Creff for 1=10, 1,=5, L =6, M= 21, and N=135 is

chosen. The cutoff index N in Fig. 5 is described by

F = N. W~in/(41za). For F= 1.5 or N = 68, respectively,

M =11 and the relative error is smaller than 0.3 percent.
In Fig. 6, the same relative error is shown for a frequency

of 5 GHz (A = 4p). It can be seen that the convergence is

much better in this case. The relative error is now already

smaller than 0.03 percent for F = 0.5 or N = 23, respec-

tively, and M = 9. For satisfactory accuracy of the trans-

formation of the expansion functions into the spectral

domain, at least M > 2DWN/a Fourier coefficients of the

Fourier series with respect to the z coordinate have to be
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Fig. 5. The convergence of the relative effective dielectric constant at Fig. 7. Tfne convergence of the relative effective dielectric constant at

low frequencies (~= 1 GHz, A = 20p) for a constant number of expan- low frequencies (~= 1 GHz, A = 20p) for a constant mrmber of Fourier

sion functions (1= 10, Z, = 5) and a constant number of Fourier coefficients in the spectral domain (F= 1.7, M = 17) in relation to the

coefficients ( L = 6) with cutoff indices N and M of the Fourier series number Z of expansion functions ( lZ = 1/2) and the number L of

expansion in the spectraf domain. See text for the geometry of the line. Fourier coefficients for the surface current density. Line geometry: see

text.

t
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-0.005
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Fig. 6. The convergence of “the relative effective dielectric constant

.f = 5 GHz (~ ~ 4P) ~d for the conditions given in Fig. 5.
at

considered. This is also the case for investigations on other

line geometries.

In Fig. 7, the relative error of the computed effective

dielectric constant (,,ff at a frequency j = 1 GHz is shown

in relation to the chosen number of expansion functions 1

and 1, = 1/2 and the number of Fourier coefficients L of

the surface current density, while the numbers of Fourier

coefficients in the spectral domain are kept constant (F=

1.7, M =17). As-a reference in this case, the value of C,eff

for F= 1.7, M =17, 1 = 14, lZ = 7, and L = 9 is used. For

L = 5, 1 =10, and 1,=5, the relative error is smaller than

0.1 percent.

Fig. 8 again shows the same relative error as described

above, but for the frequency ~ = 5 GHz (A = 4p). Again,

in this case a better convergence of-the method can be

recognized than for the lower frequency case. For 1 = 4,

1, = 2, and L = 4, the relative error already is smaller than

0.02 percent.
The improvement of the convergence with increasing

freqllency, can be explained easily. For low frequencies,

one wavelength is equal to several periodic lengths p of

the line while for higher frequencies the periodic length is

equal to or smaller than the wavelength of the wave on the

line. This means that the error per wavelength which

I 0.015

Ac,effO’O1
.—.

‘r eft

0.0

-0.01 P’ 12= 1/2 -i--

Fig. 8. The convergence of the relative effective dielectric constant at

~= S GHz ( ~ = 4P) under the conditions given in Fig. 7.

results from the final cutoff of the series expansions is

larger for low frequencies and smaller for high frequencies.

VI. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, some numerical and experimental results

for a periodically nonuniform rnicrostrip line with a zigzag

geometry (Fig. 9) shall be presented and discussed.

In Fig. 10, the dependence of the computed and mea-

sured effective dielectric constant ~,.ff = ( ~/kO) 2 on the

frequency is shown in the frequency range from 1 GHz to

15 GHz. The results for two lines with different values DW

(Fig. 9) of the edge function are presented. The substrate

material which was used was Polyguide with a dielectric

constant c, = 2.32 and a height d =1.56 mm. The ampli-

tude coefficients are DW = 0.8 mm and DW =1.2 mm, re-

spectively.
In Fig. 10, the stopbands are shown as shaded areas. For

frequencies just below the stopbands, the effective dielec-

tric constant E,eff increases but remains finite. For fre-

quencies above the stopbands, the effective dielectric con-

stant is small but is again finite and positive. Additionally,

Fig. 10 shows the measured results of the effective dielec-

tric constant in the case of the two lines. The agreement

between theory and measurement is good.
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Fig. 9. Strip geometry of a periodically nonuniform microstrip line with

a zigzag structure.
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Fig. 10. The effective dielectric constant C,eff = (~/kO )2 of the mlcro-
strip line shown in Fig. 9 and the parameters given in the figure.

The fundamental mode of the uniform rnicrostrip line is,

at least at low frequencies, quasi-TEM, so that the scalar

quantities voltage and current can be defined for these

lines under the assumptions made. The same is true for the

periodically nonuniform microstrip line. Because the elec-

tromagnetic field is periodically dependent on the z coor-

dinate, voltage and current on the line must be periodic

functions of the z-coordinate also. The voltage definition

which is used here is

u(z)=J-d- EV(X = O, z)e~p’dy.
o

(16)

The integral function of the z component of the surface

current density over the strip width w at the coordinate z

is defined as the strip current:

I(z)={ “(’).I,(x, z)e~~z dx. (17)
Wr(z)

The voltage U(z) and the current 1(z) are normalized to

the voltage UO and the current 10 which are, respectively,

the voltage and the current of a wave propagating the same

power on a uniform microstrip line of width W~ (Fig. 9).

In Fig. 11, the absolute value of the normalized voltage

U( z)/.UO is shown for different values ~~ = &/r between

0.1 and 0.95, i.e., for frequencies below the first stopband.

For ~~ = 0.1, or A = 20p, the voltage I.V(z) \ along the

line is constant and equivalent to the voltage of the uni-

form microstrip line of width W~ if the power transported

on both lines is identical. With increasing values of ~~, the

voltage increases at the points of broad strip width (z =

o,*p, *2p,.. . ) whereas it decreases at the points of

small strip width (z = + p/2, + 3p/2, . . . ). Therefore, if

the frequency approaches the lower limit of the stopband,

the planes z = O, ~ p, i 2p, . . “ become magnetic walls,

J 2.0, I [ 1

I
Iul

u~ 1.5

1.0

0.5

-

- i3N=o.9

@.=0.8\

/1
13N=0.7 ,1

f?N=ol’

& ~
00

0.1 0.2 03 0.4 05

;—

Fig. 11. The normalized absolute value of the voltage on the microstrip

line shown in Fig. 9 for different values of BN in relation to the ~
coordinate and for a frequency below the first stopband. Geometry
parameters: see Fig. 10.
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0 0.1 0.2 0.3 0.1. 0.5

Fig. 12. The normalized absolute vafue of the voltage on the microstnp

line shown in Fig. 9 for different values of ~~ m relation to the z

coordinate and for a frequency between the first and second stopbands.
Geometry parameters: see Fig. 10.

whereas electric walls can be found in the planes z =

+ p/2, + 3p/2, . . . at this frequency.

In Fig. 12, the normalized voltage IU(Z) I/UO is shown

for values of ~~ between 1.05 and 1.99, i.e., for frequencies

between the first and the second stopband. If the frequency

approaches the upper limit of the first stopband, the

voltage becomes small at z = O, + p, + 2p,. . . . i.e., at the

points of large strip width, whereas it takes a maximum

value at z = + p/2, + 3p/2,. . . . i.e., at points where the

strip width is small. This means that at the upper frequency

limit of the first stopband electric walls are positioned at
z=o, +p, *2p,..., whereas magnetic walls can be found

at z=+p/2, k3p/2, . . . . The positions of the electric

walls and the magnetic walls are therefore exchanged

considering the lower and the upper frequency limits of the

first stopband.

Additionally, Fig. 12 shows that at the lower frequency

limit of the second stopband an electric wall is positioned

atz=O, +p, +2p, ””” as well as at z = + p/2, + 3p/2,
. . . whereas the planes z = + p/4, + 3p/4, +-5p/4, . . .

cent’ain magnetic walls.

In Figs. 13 and 14, the normalized absolute value

11(z) 1/10 is shown for the same values of ~~. The de-

scribed position of the electric and the magnetic walls can

also be found in these figures.
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Fig. 13. The normalized absolute vahre of the current on the microstrip
line shown in Fig. 9 for different vafues of /3~ in relation to the z
coordinate and for a frequency below the first stopband. Geometry
parameters: see Fig. 10.
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Fig. 14. The normalized absolute value of the current in the microstrip
line shown in Fig. 9 for different values of ~~ in relation to the z
coordinate and for a frequency between the first and the second
stopbands. Geometry parameters: see Fig. 10.

VII. CONCLUSIONS

A method has been presented for the analysis of periodi-

cally nonuniform microstrip lines using the spectral do-

main technique, and which in contrast to other methods

published ea$er is rigorous. The method requires consid-

erable numencal effort, but the results are in good agree-

men t with measurements over a wide frequency range.
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