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A Spectral-Domain Analysis of Periodically
Nonuniform Microstrip Lines

FRANZ J. GLANDORF AnND INGO WOLFF, SENIOR MEMBER, IEEE

Abstract — Periodically nonuniform microstrip lines are analyzed on the
basis of a numerical field calculation. Floquet’s theorem is used to express
all field quantities in terms of their spatial harmonics, so that the problem
can be treated similarly to the uniform microstrip line. The boundary-value
problem for the microstrip line in an enclosure is formulated in a rigorous
way and then solved using Galerkin’s method in the Fourier-transform
domain. Numerical and experimental results are presented for a sinusoidal
and a zigzag-shaped microstrip line.

I. INTRODUCTION

HIS PAPER describes investigations on microstrip

lines with strip widths which change periodically in
the z-coordinate direction (the direction of wave propa-
gation). Such lines from now on shall be called periodically
nonuniform microstrip lines. Fig. 1 shows three examples
of such periodically nonuniform microstrip lines.

Like all waveguides with cross sections which vary peri-
odically in the direction of wave propagation, the periodi-
cally nonuniform microstrip lines have the following elec-
trical properties (e.g., [1]).

1) Waves propagating on such lines have phase velocities
much smaller than the propagation velocity of light in an
equivalent medium; they therefore can be used as slow-
wave structures.

2) The transmission properties of periodic waveguides
are characterized by passbands and stopbands. These
properties can be used to realize filtering structures.

The electromagnetic field of the uniform microstrip line
is a hybrid mode; i.e., the magnetic field and the electric
field have longitudinal field components. This hybrid-mode
character of the field makes the exact analysis of the
microstrip line difficult, and the numerical methods nor-
mally used are complicated (e.g., [2]-[4]). The field-theoret-
ical analysis of nonuniform microstrip lines is even more
complicated. Therefore, up to now most of the theories
described in the literature are based on simplifying as-
sumptions, e.g., on the assumption of a TEM-mode char-
acter of the electromagnetic field [5]-[7], or on a wave-
guide model for simplifying the calculations [7], [8].

Several papers have been published which describe ex-
perimental investigations on periodically nonuniform mi-
crostrip lines [10]-[12]. Additionally, there are some de-
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Fig. 1. Three examples for periodically nonumform microstrip lines.

scriptions of calculation methods which use simplifying
assumptions. One method [16] which does not use restric-
tive assumptions has -also been applied to periodically
nonuniform microstrip lines.

In this paper, the special problem of periodically non-
uniform microstrip lines shall be investigated on the basis
of a numerical calculation of the electromagnetic field
distribution on the line in the spectral domain. This method
is evaluated for some examples and the theoretical results
are compared to measurements with frequency depen-
dence. Additionally, the frequency-dependent voltage and
current distributions on the line are investigated and de-
scribed.

II. ANALYSIS ON THE BASIS OF THE
ELECTROMAGNETIC FIELD THEORY

A covered, periodically nonuniform microstrip line of
the type shown in Fig. 2(a) is considered. All geometrical
parameters and material parameters are defined in Fig,. 2.
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Fig. 2. (a) Cross section of the periodically nonuniform microstripline
considered and (b) an example for a possible strip geometry.

Fig. 2(b) shows an example of the top metallization, a
zigzag-shaped strip being chosen in this case. The metalli-
zation thickness is assumed to be zero. The periodically
varying width of the strip is defined by the two periodic
functions w,(z) (left side) and w, (z) (right side) as a
function of the z coordinate. The width of the strip at the
coordinate z is therefore w(z) =w,(z)— w,(z). The peri-
odicity (length of one period) of the line is p.

The theory for the periodically nonuniform microstrip
line described here is based principally on the method of
Jansen [3], [17], [18], which was developed for the uniform
microstrip line. This method consequently considers the
hybrid-mode character of the electromagnetic field. It has
good convergence behavior, has few final equations, and
needs relatively short computer time.

Jansen’s method for the covered microstrip line [18]
describes the electromagnetic fields in regions I and II
(Fig. 2) using two potential functions for each region,
&M(x, y, z) and ¥ (x, y,z), which satisfy the wave
equation. Using these potential functions, the electromag-
netic fields in the field regions I and II can be calculated
with the help of Maxwell’s equations.

- A wave propagation in the z direction is described by
the potential functions as follows:

¢i(x’ yiz)= ¢;(x, Y Z)e—JBZ

\I'i(xy Y Z) = \I,;(xv s 2)9—1327
In contrast to the case of the uniform microstrip line, in
the case of the periodically nonuniform microstrip line the
functions ¢,(x, y,z) and ¥,(x, y,z) are still periodic

functions of the coordinate z (Floquet’s theorem [19]).
This means that the potential functions can be developed

i=LIL (1)
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into Fourier series with respect to the z coordinate:

k=+0o0
(x.y,2)= X @i (x,y)e/Cmk/r):
k=-—o00
k=+o00
Vo(x,p,2)= L dilx,p)e@hmz (2)
k=—o0

Therefore, for the total potential functions ¢'(x, y, z) and
¥'(x, y, z), the following equations are valid:

k=+o
¢(x,9,2)= X hlx,y)e’

k=—o0

k=+00
‘I"(X,)’az)=k2 ‘P;c(x’y)ejﬁkz7

=—00

. 27k
with 8, = ‘—p— -B. (3)

As a consequence, the electromagnetic field forms an
infinite spectrum of electromagnetic waves with different
phase constants 8,. The single spectral components shall
be called space harmonics.

"~ For brevity and clearness, only lines symmetric with
respect to the z axis are considered, and only waves with
an even y component of the electric field strength with
x-coordinate dependence shall be discussed here. Of course,
the theory may also be applied to all other cases if it is
required, but the assumption made here is

w,(z) =-w(z)
E(x,y,z)=E/(-x,y,2). (4)

This assumption means that the potential functions ¢’
must be odd with respect to the x coordinate while the
potential functions ¥} must be even with respect to the x
coordinate; they must satisfy the boundary conditions at
the metallic cover and on the ground plane, as in the case
of the uniform microstrip line.

The space harmonics of the potential functions ®* and
WL can be developed into a series of harmonic functions
in such a way that each space harmonic independently
satisfies the boundary conditions and the wave equation:

P(x, y) = X alcos(kl{ v+ y'})sin(k,,x)
n=1

\Vk(x9 y) = Z b;kSin(k;nk{y—*_yl})cos(kxnx) (5)
n=1

where i=LII, y'=d, y'=—h, k,,=(n—-05)7/a, and
L= k2K —BE |
The coefficients al,, and b}, now have to be determined

so that on the surface of the dielectric substrate material

the boundary conditions for the tangential electric and

magnetic field strength are fulfilled, i.e.,
(£~ EM)x&,=0
(ﬁl—ﬁn)xé;=.l_(x,z). (6)

J(x, z), the surface current density in the metallic strip, is
a function of the coordinate x as well as the coordinate z.
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The surface current density of the periodically nonuni-
form microstrip line consists of an infinite spectrum of
space harmonics also; therefore, as in the case of the other
field components, it may also be developed into a Fourier
series with respect to the z coordinate. Additionally, it
must be possible to develop this quantity into a Fourier
series with respect to the x coordinate with a periodicity of
4a, because the width of the metallic cover (which is half
the periodicity) is chosen to be 2a (Fig. 2(a)). The x
component and the z component are even functions of x
for the even modes, which are the only ones considered
here (see above). Therefore, the two-dimensional Fourier
series expansion of J is

k=+0w o

BV N P

k=—0 n=1

(7)

where S, is a matrix:

§ - sin(k,,x) 0
n 0 cos(k,,x)

and

r ank
Jnk = (J )

znk

If the electromagnetic field is calculated using the potential
functions given in (2) or (5), respectively, and if in addition
the boundary conditions are introduced into these equa-
tions, the unknown coefficients al,, al*, bl, and b% can
be determined as functions of the Fourier series coeffi-
cients J,, of the surface current density by a comparison
of the coefficients of the resulting systems of equations.

The total electromagnetic field of the periodically non-
uniform microstrip line therefore can be described by the
(up to now) unknown Fourier coefficients Jn . of the surface
current density. Especially, for the electrical field strength
which is tangential to the plane y = 0, the following equa-
tion results:

L o
E=EY,_ X&=E

k=40 oo

ly=0><é;

= X Z ST, e P (8a)
k=—00 n=
with
= jrxxnk rxznk
£,= : 8b
* ( - rxznk Jrzznk ( )
and

Bi | ki
T, = — | —+
xxnk |:an 9 .

n

1 1
xznk Bk xn 0k an

k)%n l%
T, —- + £
zznk [an P .

n

2 2 12 12
__kxn+18k kyn +kyn
Wik TnIk TJ;E

an -

and

(kz +,8,f)[ el EII]
gn_szL_ AT (80)
k 0 TnIk Tlfi

Wit

where
TL =kl tan (kL. d)
TH =k, tan (kD 7).

ynk

(3d)

III. THE SOLUTION OF THE BOUNDARY-VALUE
PrOBLEM USING GALERKIN’S METHOD

Equation (8) describes the electric field which is tangen-
tial to the boundary between the dielectric substrate
material and the air region by means of a two-dimensional
Fourier series with respect to the surface current density
on the boundary. On the metallic strip (which is assumed
to be of infinite conductivity) the tangential electric field
strength must vanish.

To find a solution of this eigenvalue problem, the surface
current density and the phase constant have to be de-
termined so that the condition E,=0 for w,(z)<x<
w,(z) and all values of z is satisfied.

This problem shall be solved using Galerkin’s method;
for this purpose, the surface current density is expanded
into a series using a functional system which still has to be
chosen appropriately:

()

11

X’ X;x
X

iz

) and

In (9), the vector function )Z is used to describe the x
dependence of the surface current density for values z =
const. Because these functions are identically zero outside
the metallic strip and because of the z-dependent strip
width, these functions must be z dependent also. The
dependence of the surface current density on the z coordi-
nate which results from the electromagnetic field will be
described by the functions U,(z); they are periodic func-
tions having periodicity p. Their Fourier series expansion
is given by
+ o0
U(z)= ¥ el (10)
I=—00

With this, together with (9), the Fourier coefficients de-
scribing the surface current density in (7) can be written as

=% % (11)

1=1]=-0c0

-
ulenklz
with

= 1
Xkt =7 on+p/W,(z)S XeJ(Zﬂ/P)(l Rz gy ds.
4ap w,(2)

If these coefficients are introduced into (8), the tangential
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electric field strength is

o0 + o0

L nk(i Y u, X k,,)efﬁkz

n=1k= i=ll=-x

E,

I

Rel)

I
Ms
MS i

S

n=1k=-oc0

‘S(;r:kfnkfnkzlejﬁkz) . (12)

I
i

1 - o0

To satisfy the condition that the tangential electric field
strength vanish on the metallic strip, the moment method
in its special form of Galerkin’s method [20] is used. This
means that the scalar product formed by the tangential
electric field strength and by the expansion functions of
the surface current density must vanish:

Zo+ P rwi(z) >
f" f’” *T(x, 2) E,(x,2)e B dxdz =0 (13)

with r=1,2,--- 00 and s = —00,-+-,~1,0,1,+ - -, + 00.

If the tangential electric field strength given in (12) is
introduced into (13) and if in addition the succession of
integration and summation is exchanged, the infinite equa-
tion system of the following form is derived:

+p wi(z) = -
Z Z tlz Z fo f[ X*Tr ankil

n=1k=-00 "% w,(z)

.eJ(Zﬂ/p)(k—s) dxdz

= + o0 - 0
= Z Z 112 Z n rs nk nktl
i=1ll=—w n=1k
00
= Z Z utl rsil (14)
1=1l=—-
for r=1,2,---,00 and s=—00,---,—1,0,1,--, + 0.
Here,
o k=+o0
rszl Z Z nkrsrnk nkil*

n=1k=-c0

For the numerical evaluation, the infinite series are trun-
cated at finite values of the indices. If the maximum values
of the indices i and [ are i=1 and / = 4+ L, then 2L +1)I
unknown coefficients u,, have to be determined. If the
same truncation for the series with indices r and s is
made, the number of equations is equal to the number of
unknown coefficients u,,.

The highest value of the index k is evaluated from the
indices / and s. Only elements of the Fouriers series of the
surface current density given in (11) up to the order of M
are considered, where M must satisfy the conditions |/ — k|
<M and |s — k| < M. The highest value of the index n
will be designated N.

2imx

fux2) = ( wz)

0 for I, <

s( 2(i—1)7x
fulx,2) = w(z)

0

for 1
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w(z)= —2+D cos[zg’n ]

p

Fig. 3.

w, (z) = -w ()

Strip geometry of a perjodically nonuniform microstrip line with
sinusoidally variable strip width.

The finite homogeneous equation system has a nontriv-
ial solution only if the determinant of the system matrix is
zero. The elements of the system matrix are functions of
the geometrical parameters of the microstrip line, the
frequency and the phase constants. The zeros of the de-
terminant therefore can be determined either as a function
of the wavelength for a given frequency or as a function of
the frequency if the wavelength is given. The unknown
coefficients u;, may then be easily calculated within a
constant factor. Using these coefficients, the electrical
surface current density in the metallic strip and, therefore,
the electromagnetic field in all field regions of the struc-
ture (Fig. 2(a)) can be computed.

IV. THE NUMERICAL EVALUATION

The convergence of the numerical method is heavily
influenced by the choice of the expansion functions of the
surface current density. Two physical properties must be
taken into account when the expansion functions are cho-
sen.

1) It must be borne in mind that the current density
cannot have a component perpendicular to the edge of the
metallic strip. This condition will be satisfied if all expan-
sion functions X, (x, z) have only components parallel to
the curves defined by w,(/) and w,(z) (Fig. 3).

2) Additionally, consideration must be given to the fact
that the surface current density has a pole at the strip edge
(edge condition). Therefore, the expansion functions are
chosen so that this pole is approximated fairly well
a priori.

A system of expansion functions which satisfies these
requirements is

)Z(X,Z)=——“';x—2
=55
( cos(a(x, z)) sin(a(x,z)))(fx,(x,z))
—sin(a(x,z)) cos(a(x,z))/\/,.(x,z)
with

) forl<i<I, andw,<x<w,

<lorx>w,/(x) x<w,(x)

) forI,<i<landw,<x<w,

Ki<lLorx>w,(x) x<w,x)
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Fig. 4. Brillouin diagram of the fundamental mode on a periodically
nonuniform microstrip line with sinusoidally variable strip width.

and

dw,(z))

2arct
arctan ( ya

w(z)

The integrals defining the Fourier coefficients in (11)
can be evaluated in closed form with respect to the x
coordinate if these expansion functions are used. They
must be integrated numerically with respect to the z coor-
dinate.

As an example, a periodically nonuniform microstrip
line with sinusoidally varying strip width (Fig. 3) shall be
discussed. The system of equations (14) has been derived
for the covered microstrip line shown in Fig. 2; therefore,
not only does (14) contain the solutions for the electro-
magnetic field modes which are propagating in the micro-
strip structure; in addition, waveguide modes inside the
metallic cover may be found. Only the microstrip mode
which in the case of a decreasing amplitude D, of the
width function (Fig. 3) converges into the quasi-TEM
mode of the uniform microstrip line shall be of interest
here. In the following, this mode will be called the funda-
mental mode of the periodically nonuniform microstrip
line.

Fig. 4 shows (in the manner usually applied in the case
of periodically nonuniform lines) the frequency-dependent
transmission properties of the microstrip line given in Fig.
3 in the 8-k plane (Brillouin diagram). The transmission
properties are given by the solid lines in this diagram. As
can be seen from the figure, the line has the typical
transmission properties of periodic lines characterized by
stopbands and passbands.

If a solution of the infinite equation system exists for a
frequency f and a phase constant 8, the equation system
also has a solution for the frequency f and the phase
constant B’'= B +2au/p, with p=41,+2, +3,---
(Floquet’s theorem). These different solutions are classified
as solutions of order u. In Fig. 4, the solid lines represent
the solution of order zero. The solutions of order p # 0 can
be transformed into solutions of the order p=0 if the
indices [ and k (14) are replaced by I'=/—p and k'=k

a(x,z) = ‘X (15)
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— . The solutions of order p# 0 therefore describe the
same mode as the solution of order p = 0.

Additionally, since a wave in the negative z direction
must be a solution of the eigenvalue problem, the equa-
tions may also be solved for the frequency f and the phase
constant f’= — fB. Solutions of the order p # 0 exist for
waves which propagate in the negative z direction as well
as in the positive z direction.

In Fig. 4, solutions of order u # 0 are shown as dashed
lines. The curves with a positive slope characterize the
wave modes propagating in the positive z direction, whereas
the curves with a negative slope describe waves which
propagate in the negative z direction. The curves in Fig. 4
which represent solutions of order p # 0 also can be inter-
preted as the dispersion curves of the space-harmonic
partial fields of the fundamental mode.

V. THE CONVERGENCE OF THE NUMERICAL
METHOD

The convergence behavior of the numerical method shall
be discussed for the example of a periodically inhomoge-
neous microstrip line with sinusoidally varying strip width.
The substrate material used is polyguide material (e, =
2.32) with a thickness of h=1.56 mm. The geometrical
dimensions of the metallic strip structure (as shown in Fig.
3) are: W, =6 mm, D, =1 mm, and p =10 mm.

The stability of the calculated effective dielectric con-
stant €,.; = (B8/ky)* in relation to the different cutoff
indices has been taken as a criterion for the convergence of
the numerical method. The effective dielectric constant
€, 1s dependent on the chosen number of expansion
functions as well as on the number of Fourier coefficients
of the surface current density in the z direction. Addition-
ally, the computation results are influenced by the accu-
racy with which the expansion functions are described in
the spectral domain. This means that the number of coeffi-
cients of the two-dimensional Fourier series expansion of
the field quantities influences the result. Furthermore, the
computations show that the convergence is also frequency
dependent.

The relative error of the computed values €, at a
frequency of 1 GHz (A =20p) is shown in Fig. 5 for a
constant number of expansion functions (/ =10 and I, = 5)
and a constant number of Fourier coefficients of the
surface current density (L =6) in relation to the cut-off
indices N and M of the two-dimensional Fourier series. As
a reference for calculating the relative error, the value of
€, for I=10, I.=5 L=6, M=21, and N=135 is
chosen. The cutoff index N in Fig. 5 is described by
F=N-W_. /(4l,a). For F=15 or N=68, respectively,
M =11 and the relative error is smaller than 0.3 percent.

In Fig. 6, the same relative error is shown for a frequency
of 5 GHz (A = 4p). It can be seen that the convergence is
much better in this case. The relative error is now already
smaller than 0.03 percent for F=0.5 or N =23, respec-
tively, and M =9. For satisfactory accuracy of the trans-
formation of the expansion functions into the spectral
domain, at least M > 2D, N/a Fourier coefficients of the
Fourier series with respect to the z coordinate have to be
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-0.10

Fig. 5. The convergence of the relative effective dielectric constant at
low frequencies (f =1 GHz, A = 20p) for a constant number of expan-
sion functions (I=10, I,=5) and a constant number of Fourier
coefficients ( L = 6) with cutoff indices N and M of the Fourier series
expansion in the spectral domain. See text for the geometry of the line.

-0,01 J

Fig. 6. The convergence of the relative effective dielectric constant at
f=5GHz (A = 4p) and for the conditions given in Fig, 5.

considered. This is also the case for investigations on other
line geometries.

In Fig. 7, the relative error of the computed effective
dielectric constant €, at a frequency f =1 GHz is shown
in relation to the chosen number of expansion functions 7
and I, = I/2 and the number of Fourier coefficients L of
the surface current density, while the numbers of Fourier
coefficients in the spectral domain are kept constant (F =
1.7, M =17). As a reference in this case, the value of e,
for F=1.7, M=17, I=14, I,=", and L =9 is used. For
L =35, I=10, and I,=5, the relative error is smaller than
0.1 percent.

Fig. 8 again shows the same relative error as described
above, but for the frequency f =5 GHz (A = 4p). Again,
in this case a bétter convergence of -the method can be
recognized than for the lower frequency case. For I =4,
I,=2, and L = 4, the relative error already is smaller than
0.02 percent.

The improvement of the convergence with increasing
frequency, can be explained easily. For low frequencies,
one wavelength is equal to several periodic lengths p of
the line while for higher frequencies the periodic length is
equal to or smaller than the wavelength of the wave on the
line. This means that the error per wavelength which
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Fig. 7. The convergence of the relative effective dielectric constant at
low frequencies (f =1 GHz, A = 20p) for a constant number of Fourier
coefficients in the spectral domain (F=1.7, M =17) in relation to the
number I of expansion functions (I, =1/2) and the number L of
Fourier coefficients for the surface current density. Line geometry: see
text.

-0.01 4

F1g 8. The convergence of the relative effective dielectric constant at
f=5GHz (A = 4p) under the conditions given in Fig. 7.

results from the final cutoff of the series expansions is
larger for low frequencies and smaller for high frequencies.

VI. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, some numerical and experimental results
for a periodically nonuniform microstrip line with a zigzag
geometry (Fig. 9) shall be presented and discussed.

In Fig. 10, the dependence of the computed and mea-
sured effective dielectric constant €, = (8/ky)* on the
frequency is shown in the frequency range from 1 GHz to
15 GHz. The results for two lines with different values D,
(Fig. 9) of the edge function are presented. The substrate
material which was used was Polyguide with a dielectric
constant €, =2.32 and a height d =1.56 mm. The ampli-
tude coefficients are D,=0.8 mm and D, =12 mm, re-
spectively.

In Fig. 10, the stopbands are shown as shaded areas. For
frequencies just below the stopbands, the effective dielec-
tric constant €, increases but remains finite. For fre-
quencies above the stopbands, the effective dielectric con-
stant is small but is again finite and positive. Additionally,
Fig. 10 shows the measured results of the effective dielec-
tric constant in the case of the two lines. The agreement
between theory and measurement is good.
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Fig. 9. Strip geometry of a periodically nonuniform microstrip line with
a zigzag structure.
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Fig. 10. The effective dielectric constant ¢, = (8/k)* of the mucro-
strip line shown in Fig. 9 and the parameters given in the figure.

The fundamental mode of the uniform microstrip line is,
at least at low frequencies, quasi-TEM, so that the scalar
quantities voltage and current can be defined for these
lines under the assumptions made. The same is true for the
periodically nonuniform microstrip line. Because the elec-
tromagnetic field is periodically dependent on the z coor-
dinate, voltage and current on the line must be periodic
functions of the z-coordinate also. The voltage definition
which is used here is

(16)

The integral function of the z component of the surface
current density over the strip width w at the coordinate z
is defined as the strip current:

U(z) =f07d— E (x=0,z)e/dy.

(17)

The voltage U(z) and the current I(z) are normalized to
the voltage U, and the current I, which are, respectively,
the voltage and the current of a wave propagating the same
power on a uniform microstrip line of width W,, (Fig. 9).
In Fig. 11, the absolute value of the normalized voltage
U(2)/U, is shown for different values 8, = B, /7 between
0.1 and 0.95, i.e., for frequencies below the first stopband.
For B, =0.1, or A =20p, the voltage |U(z)| along the
line is constant and equivalent to the voltage of the uni-
form microstrip line of width W if the power transported
on both lines is identical. With increasing values of S, the
voltage increases at the points of broad strip width (z =
0,+ p,+2p,---) whereas it decreases at the points of
small strip width (z=4 p/2, +3p/2,---). Therefore, if
the frequency approaches the lower limit of the stopband,
the planes z=0,4 p, +2p,--- become magnetic walls,
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Fig. 11. The normalized absolute value of the voltage on the microstrip
line shown in Fig. 9 for different values of By in relation to the z
coordinate and for a frequency below the first stopband. Geometry
parameters: see Fig. 10.
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Fig. 12. The normalized absolute value of the voltage on the microstrip
line shown in Fig. 9 for different values of By 1n relation to the z
coordinate and for a frequency between the first and second stopbands.
Geometry parameters: see Fig. 10.

whereas electric walls can be found in the planes z =
+p/2,+£3p/2,- - at this frequency.

In Fig. 12, the normalized voltage |U(z){/U, is shown
for values of 8, between 1.05 and 1.99, i.e., for frequencies
between the first and the second stopband. If the frequency
approaches the upper limit of the first stopband, the
voltage becomes small at z=0, 4+ p, £2p,---, ie, at the
points of large strip width, whereas it takes a maximum
value at z=% p/2,+3p/2,---, ie., at points where the
strip width is small. This means that at the upper frequency
limit of the first stopband electric walls are positioned at
z=0,+ p, +2p,- - -, whereas magnetic walls can be found
at z=+p/2, +3p/2,---. The positions of the electric
walls and the magnetic walls are therefore exchanged
considering the lower and the upper frequency limits of the
first stopband.

Additionally, Fig. 12 shows that at the lower frequency
limit of the second stopband an electric wall is positioned
at z=0,+p,+2p,--- aswell as at z=+p/2,+3p/2,

-, whereas the planes z=4 p/4,+3p/4,+5p/4,---
contain magnetic walls.

In Figs. 13 and 14, the normalized absolute value
|I(z)|/1, is shown for the same values of 8. The de-
scribed position of the electric and the magnetic walls can
also be found in these figures.
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Fig. 13. The normalized absolute value of the current on the microstrip
line shown in Fig 9 for different values of 8y in relation to the z
coordinate and for a frequency below the first stopband. Geometry
parameters: see Fig. 10.
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Fig. 14. The normalized absolute value of the current in the microstrip
line shown in Fig. 9 for different values of B85 in relation to the z
coordinate and for a frequency between the first and the second
stopbands. Geometry parameters: see Fig. 10.

VIL

A method has been presented for the analysis of periodi-
cally nonuniform microstrip lines using the spectral do-
main technique, and which in contrast to other methods
published earlier is rigorous. The method requires consid-
erable numerical effort, but the results are in good agree-
ment with measurements over a wide frequency range.

CONCLUSIONS
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